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Nomenclature

BDF backward differentiation formula. 3
CD/CI continuous integration and continuous deploy-

ment. 2
CFD computational fluid dynamics. 4
FEM finite elements method. 2

GCI grid convergence index. 2
QoI quantity of interest. 2
RMSE root mean square error. 1, 3, 4
UEABS Unified European Applications Benchmark

Suite. 2

S1 Verification
S1.1 Mesh convergence metrics

The root mean square error (RMSE) between the solution i and j is defined thought the L2 norm ||.||2 as:

ϵi,j = ||vi − vj || =
√

(ṽi − ṽj)2 (1)

Once all the cases are computed and the errors ϵ1,2 and ϵ2,3 computed the observed order of convergence is
calculated as [1]:

si,k = 1 · sign (ϵi,j/ϵi,j) (2)

qi,k(pi,k) = ln

(
r
pi,k

j,k − s

r
pi,k

i,j − s

)
(3)

pi,k = [1/ ln(rj,k)] [ln |ϵi,j/ϵj,k|+ qi,k(pi,k)] (4)

Note that in our case ri,j = rj,k = r = 2.0, so qi,k(pi,k) = 0.0 and therefore the previous system of equations is
reduced to:

pi,k =
ln |ϵi,j/ϵj,k|

ln(r)
(5)



For three velocity fields computed u1, u2, u3, u1 being the coarsest, for three subdivision levels, the order of
the convergence of the numerical scheme is given by:

p =
ln(||u1 − u2||2/||u2 − u3||2)

ln(2.0)
(6)

With the observed p value, the grid convergence index (GCI) can be computed as [1]:

GCI95%i,j = 1.25
ϵi,j

rpi,j − 1
(7)

This uncertainty estimate provides an interval f ± U95% within the true mathematical value fT falls with a proba-
bility of 95%.

S1.2 Numerical code verification
Numerical code verification is executed as per Section 2 of [2], for a 2D Poiseuille and a 3D Womersley flow

problem in a cylindrical tube. These problems have non-trivial analytical solutions that are used as true value.
For both cases the discretisation error is monitored as the grid is systematically refined by halving as in [3]. If
the ratio between mesh subdivisions is defined as ri,j = ri/rj then, for this case r1,2 = r2,3 = r = 2.0, a figure
considerably larger than 1.3, the minimum value recommended [2]. The velocity field is the quantity of interest
(QoI) to be verified as it is also the raw variable used calculated in the numerical model. The mesh convergence
metrics are described in Section S1.1.

S1.2.1 Software Quality Assurance
The finite elements method (FEM) software is developed with a continuous integration and continuous de-

ployment (CD/CI) strategy based on Git 1, which combines feature-driven development and feature branches
with issue tracking. Git pipelines ensure continuous integration, running a series of software checks, builds, and
regression tests when the developers modify the source code. The build evaluation includes 27 combinations
of architectures (Intel, IBM), compilers (gnu, intel, pg, xl), and optimization options, running more than 200 re-
gression tests executed with various MPI and OpenMP configurations, more than 4000 different executions. This
method helps to detect bugs early in the development cycle and guarantee the correctness of the simulation re-
sults and the software’s stability. On this manuscript Alya version 2.1 was used, available in the Unified European
Applications Benchmark Suite (UEABS) [4]. Further description of the code and training material can be found
in the following links 2 3. Following the “Credible practice of modeling and simulation in healthcare” [5], a data
availability statement is included. The referenced section details how to gather the data to reproduce this work.

S1.2.2 2D Poiseuille
Problem description: This test involves a constant Poiseuille flow in a 2D rectangle.

Domain definition and space-time discretisation: The mesh is a rectangle 0.8 × 4[cm], centered at and
aligned with X axis. Three meshes with 12800, 51200 and, 204800 elements were used (ratio ri,j = 2.0). For
each mesh a time step of 0.01[s], 0.005[s] and, 0.0025[s] is used respectively. The simulations run for 10[s]
what means 1000, 2000 and 4000 time steps for each case. Density and viscosity are ρ = 1.06[g/cm3] and
µ = 0.035[Poise].

Initial and boundary conditions: The initial velocity domain is vi |t=0= 0. At the inlet Γin a parabolic constant
flow profile with max velocity of 1.25cm/s is used, given by the formula:

vx |Γin= −7.8125y2 + 1.25 (8)

1 https://gitlab.com/bsc-alya/alya 2 https://www.bsc.es/research-and-development/software-and-apps/software-list/alya
3 https://compbiomedeu.github.io/applications/Alya/Alya.html

https://gitlab.com/bsc-alya/alya
https://www.bsc.es/research-and-development/software-and-apps/software-list/alya
https://compbiomedeu.github.io/applications/Alya/Alya.html


Table 1: RMSE and RMSE expressed as percentage of 1.25[cm/s] for the Poiseuille flow problem solution in 2D.

halving [−] Elements [−] Time step [s] RMSE [cm/s] RMSE [%] GCI95% [cm/s]

0 12,800 0.01 0.004555 0.36 0.00206

1 51,200 0.005 0.001361 0.11 0.000617

2 204,800 0.0025 0.000379 0.03 0.000171

The outlet is free with weakly imposed pressure equal to zero. The other two walls Γw have no slip condition
vi |Γw= 0.

Analytical solution The analytical solution should follow Eq. (8).

Results: The calculation of the convergence was calculated at the nodes of the coarsest mesh, to avoid any
interpolation of the solution. Results for each case are sumarised in Table 1. The observed order of convergence
p was equal to 1.907, compatible with the theoretical order of convergence of 2 of the 2nd order backward
differentiation formula (BDF) time scheme used.

S1.2.3 3D Womersley flow
Problem description : solve pulsatile Womersley flow in a 3D cylinder.

Domain definition and space-time discretisation: : The domain is has length l = 4[cm] and radius r =
0.4[cm]. Three hexahedral meshes are used with 10179, 81432, and 651456 elements respectively. The time
steps used for each case were 0.005[s], 0.0025[s], and 0.00125[s] respectively. 10[s] were simulated, accounting
for 2000, 4000 and 8000 time steps respectively. Density and viscosity are ρ = 1.06[g/cm3] and µ = 0.035[Poise].

Initial and boundary conditions: The initial velocity domain is vi |t=0= 0. At the cylinder inlet a pressure
boundary condition given by P |Γin= 30cos(2πt)[Ba]. The outlet is free with weakly imposed pressure equal to
zero. The other two walls Γw have no slip condition vi |Γw= 0.

Analytical solution: The velocity component along the axis of the cylinder is given by:

v = Re

[
A

iωρ

(
1−

J0
(
i3/2αr/R

)
J0(i3/2α)

)
exp(iωt)

]
(9)

where:

A = ∆P/L (10)

α = R
√
ωρ/µ (11)

ω = 2πf (12)

For a representation of the analytical solution refer to the blue line in Fig. 1.

Results : Figure 1 shows the analytical (Eq. (9)) and the simulated solution. The maximum velocity reaches
expected periodic behaviour after 3[s]. Table 2 shows the RMSE of the velocity calculation with respect to the
analytical solution in the middle slice (x = 2[cm]) for the finest mesh. A RMSE ϵ = 0.0[cm/s] at r = 0.4[cm] is
explained as a Diriclhet boundary condition vi = 0.0[cm/s] is imposed there what is exactly equal to the analytical
solution. The observed order of convergence is pobs = 1.82, compatible with the theoretical order of convergence
of 2 of the 2nd order BDF time scheme used. Compared to the 2D Poiseuille, a larger difference is not unexpected
given the 3D Womersley is 3D and transient.



Fig. 1: Orange: Simulated maximum velocity. Blue: analytical solution.

Table 2: RMSE in [cm/s] at different distances from the cylinder center at quarters of the pulsation cycle averaged
radially and over the last two cycles for the finest mesh.

Time[s]
Distance from center [cm]

0.0 0.2 0.2 0.3 0.4

x.00 0.000517 0.000313 0.000236 0.000462 0.0

x.25 0.000225 0.000329 0.000311 0.000174 0.0

x.50 0.000491 0.000290 0.000253 0.000471 0.0

x.75 0.000244 0.000347 0.000324 0.000168 0.0

S1.3 Numerical calculation verification
The original model was subdivided 2 times, splitting each element into 8, to obtain meshes with 6.6M , 53.1M ,

and 425M elements respectively. The time step used is ∆t = 0.00428[s]. If the critical time step is ∆tc then,
∆t/∆tc = 10−3[−].

S1.3.1 Ventricular geometry with stationary boundary conditions
The goal is to estimate the stationary error and observed convergence order for the computational fluid

dynamics (CFD) solver on the mesh created for the ventricular geometry. Geometry deformation, valve model,
and the pump boundary condition are turned off as they depend on measurements obtained from the CFD
solver. As such geometry does not have an analytical solution, the RMSE are calculated against the finest mesh
computed. Results are summarised in Table 3. The observed order of convergence is pobs = 0.971 compatible
with the theoretical order of convergence of 1 provided by the first order trapezoidal time integration.

Table 3: RMSE and RMSE expressed as percentage of the maximum speed in the domain (150[cm/s]) for
problem specific geometry.

halving [−] Elements [−] RMSE [cm/s] RMSE [%] GCI95% [cm/s]

0 6.6M 1.37 0.91 1.78

1 53.1M 0.511 0.34 0.66

2 425M 0.0 0.0 0.0

S1.3.2 Ventricular geometry with transient boundary conditions
Here we show the RMSE for the complete model described in the main document.. As the complete model

have transient boundary conditions, the RMSE is provided in time-averaged quantities. RMSEs are calculated
against the finest mesh Results are summarised on Table 4. The time-averaged observed order of convergence
is pobs = 0.85 compatible with the theoretical order of convergence of 1 provided by the first order trapezoidal time
integration.



Table 4: Time-averaged RMSE (RMSE), the timed-averaged RMSE% , and the time averaged GCI95% for the
problem-specific gometry.

halving [−] Elements [−] RMSE [cm/s] RMSE [%] GCI95% [cm/s]

0 6.6M 3.61 2.40 5.58

1 53.1M 2.12 1.41 3.27

2 425M 0.0 0.0 0.0
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